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Introduction 

With the exponential rise in urbanization and digital infrastructure, public safety has emerged as a core 

challenge for modern smart cities. Surveillance systems, especially those based on closed-circuit television 

(CCTV), are increasingly deployed for monitoring and law enforce- ment. However, their effectiveness is 

often hindered by manual monitoring limitations and delayed response times. Traditional surveillance systems 

primarily record footage, but lack the intelligence to proactively analyze and identify criminal or suspicious 

activities in real- time. As urban environments become more densely populated, the scale and complexity of 

monitoring tasks surpass human capabilities, necessitating automated and intelligent surveil- lance solutions 

[25, 22]. 

Artificial intelligence (AI), particularly deep learning, has demonstrated immense poten- tial in visual 

understanding tasks such as object detection, activity recognition, and anomaly detection. Its application in 
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security systems has led to a paradigm shift from passive moni- toring to active threat detection. Deep 

learning models can learn intricate patterns of human behavior and flag abnormal or suspicious activities by 

leveraging large-scale surveillance data. Moreover, advances in computational power and edge computing 

have enabled real-time in- ference, making AI-based surveillance more viable and effective [17, 9]. Despite 

this progress, real-world deployment faces several challenges, including varying environmental conditions, 

low-quality footage, and the ambiguous nature of what constitutes ”suspicious” behavior. 

Suspicious criminal activity detection is inherently a complex, context-dependent task. It requires not only 

accurate perception of spatial cues from video frames but also a deep temporal understanding of behavior 

patterns. Traditional rule-based systems or shallow machine learning models rely on predefined heuristics or 

handcrafted features, which fail to generalize across diverse environments. Moreover, human behavior varies 

significantly across regions, cultures, and scenarios, making it difficult to define fixed patterns of suspicion 

[16, 19]. 

Manual video analysis is both time-consuming and error-prone, often failing to identify threats before they 

escalate. Human operators may miss critical incidents due to fatigue or bias, particularly when monitoring 

multiple screens simultaneously. Additionally, large-scale video streams generate an overwhelming amount of 

data that cannot be analyzed manually in real-time. Therefore, there is a pressing need for a scalable, adaptive, 

and intelligent framework that can learn behavioral patterns, detect deviations, and issue timely alerts with 

minimal human intervention. This calls for a robust, automated system that balances accuracy, efficiency, and 

interpretability [21], [15]. 

Initial approaches to automated surveillance focused on motion detection, optical flow, and rule-based event 

recognition. Although computationally efficient, these methods often generated false alarms due to their 

inability to distinguish between benign and malicious anomalies. To overcome these limitations, deep 

learning-based methods gained popularity, offering the ability to extract and learn hierarchical features 

directly from raw video data. Hasan et al. (2016) introduced one of the earliest deep learning models for video 

anomaly detection using autoencoders to learn temporal regularities [6]. Similarly, Ravanbakhsh et al. (2017) 

employed generative adversarial networks (GANs) to model normal activity distributions and flag deviations 

as anomalies [20]. 

Building on these foundations, Ionescu et al. (2019) proposed object-centric autoen- coders, while Liu et al. 

(2018) introduced a future frame prediction baseline for anomaly detection, both enhancing temporal 

modeling [8, 13]. Sabokrou et al. (2018) presented a fully convolutional architecture optimized for fast 

detection in crowded environments [21]. In parallel, the introduction of large-scale benchmarks such as 

DAVIS [18] enabled more stan- dardized evaluations. More recently, graph neural networks (GNNs) and 

attention-based models have demonstrated strong performance in capturing spatial-temporal relations, with 

promising applications in surveillance scenarios [23, 2]. 

Lightweight models such as Light Anomaly Net and Mobile Net-based frameworks have been proposed for 

edge devices to facilitate real-time deployment without sacrificing accuracy [15],[12]. Multimodal fusion 

approaches combining audio, video, and contextual data have also been explored to increase robustness, as 

demonstrated in Jeong et al. (2023) [11]. However, challenges such as poor video quality, changing light 

conditions, and privacy concerns remain largely unresolved. 

To highlight the shift from conventional rule-based methods to modern deep learning pipelines, Figure 1 

compares traditional surveillance systems with AI-based approaches. This visual contrast illustrates how deep 

learning automates feature extraction and improves anomaly detection accuracy. 



 

 

 

https://doi.org/10.70454/JRIST.2025.10105                Volume No. 01, Issue. 01, 2025  Page 55 
 

 

Journal of Recent Innovation in 

Science and Technology 
E-ISSN: 3117-3926 

Received: 2025-09-03  

Accepted: 2025-09-14  

Published Online: 2025-09-20 

DOI: 10.70454/JRIST.2025.10105 
 

 

Figure 1: Comparison between traditional surveillance methods and deep learning-based intelligent 

surveillance pipelines. 

 

Major Objectives of the Study 

 To design an intelligent, deep learning-based framework for detecting suspicious crim- inal activities in 

real-time. 

 To integrate spatial and temporal modeling using CNN and transformer architectures for behavior 

analysis. 

 To optimize the model for real-world deployment through lightweight design and edge computing 

compatibility. 

 To evaluate the model on benchmark datasets and real-world surveillance scenarios. 

 To ensure the ethical deployment of surveillance AI through fairness and explainability measures. 

This study proposes a real-time, deep learning-based framework for the identification of suspicious criminal 

activities in public surveillance systems. The proposed architecture integrates convolutional neural networks 

(CNNs) for spatial feature extraction with transformer- based models for temporal sequence modeling. CNNs 

are responsible for encoding appearance features from each video frame, while transformers handle temporal 

dependencies across frames, enabling the system to learn both short- and long-term behavioral patterns. 

To address real-world deployment issues, the model is optimized for edge devices using quantization and 

pruning techniques. Furthermore, the use of data augmentation and synthetic oversampling techniques helps 

mitigate class imbalance—one of the primary challenges in criminal activity datasets. The model is trained 

and validated on benchmark datasets, incorporating additional noisy real-world video feeds to test robustness. 

Integration with a scalable alerting mechanism enables real-time threat detection and notification, making the 

framework suitable for smart city applications. 

A key innovation of this framework is its modularity and adaptability across different surveillance 

environments. It allows for parameter tuning based on scene density, camera resolution, and crime categories. 

Furthermore, ethical design principles such as bias mitigation and explainability are incorporated through 

attention-based heatmaps and transparent scoring mechanisms [26], [4]. 

To provide a clear overview of the proposed pipeline, a simplified architectural flow diagram is presented in 

Figure 2. It outlines the major components involved in detecting suspicious activities, from video input to 

real-time alert generation. 

https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.z94jm36s7lxx
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.lqjej2xdgt0n
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.28xoxxrjis04
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Figure 2: Simplified Architecture for Suspicious Activity Detection 

The remainder of this paper is structured as follows: Section 2 presents a comprehensive review of existing 

literature on deep learning in surveillance, anomaly detection, and system design. Section 3 elaborates on the 

methodology, including data preprocessing, model architecture, and training strategies. Section 4 discusses 

implementation details, deployment pipeline, and system integration. Section 5 presents the results, evaluation 

metrics, and performance analysis. Section 6 explores the broader implications, limitations, and ethical 

considerations of the work. Finally, Section 7 concludes the study and outlines future research directions. 

Literature Review 

1. Early Deep Learning Approaches for Anomaly Detection 

The use of deep learning in video surveillance for criminal activity detection has gained substantial 

momentum in recent years due to advances in computation, accessibility of large datasets, and the need 

for real-time situational awareness. Early attempts relied on hand- crafted features and statistical 

techniques, but these approaches struggled with scalability and context generalization. Hasan et al. [6] 

laid foundational work in using autoencoders to learn temporal regularities from video sequences, 

establishing the precedent for unsupervised anomaly detection. Ravanbakhsh et al. [20] further advanced 

this domain with the application of generative adversarial networks (GANs), modeling normal patterns 

so that deviations could be effectively identified. Their work showed promise in synthetic settings but 

suffered 

 

performance drops when applied to uncontrolled environments. In a similar vein, Ionescu et al. [8] 

introduced object-centric auto encoders combined with dummy anomalies, enhancing the robustness of 

https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.qlpvsz7sjzjt
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.rirlk67o850o
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.eqm3ue2rod7u
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anomaly classification. These methods demonstrated that deep representations could outperform 

traditional surveillance techniques, particularly in unstructured or crowded scenes. 

2. Optimizing Deep Models for Real-Time and Spatiotemporal Understanding 

Subsequent efforts aimed to overcome computational inefficiencies and scalability concerns by focusing 

on lightweight architectures and task-specific optimizations. Sabokrou et al. [21] proposed a fully 

convolutional neural network (FCN) for fast anomaly detection, emphasizing the need for both speed and 

accuracy in real-world applications. Their network demonstrated competitive performance even in 

crowded scenes, where occlusion and noise are prevalent. Liu et al. [13] introduced a future frame 

prediction model using convolutional LSTMs and GANs. The system learned to generate expected 

frames and identify deviations during real-time streaming. Despite these achievements, both methods 

acknowledged limitations in generalizing across diverse camera angles and environmental changes. Xu et 

al. [27] tackled this by combining appearance and motion features using deep CNNs and RNNs, 

effectively capturing spatial and temporal dynamics. These studies collectively highlight the trend of 

integrating spatiotemporal features to improve anomaly detection. 

3. Benchmark Datasets and Real-World Deployment Considerations 

Benchmarking datasets and standardized evaluation methodologies are critical to validating these 

systems. Perazzi et al. [18] created the DAVIS dataset, which became a standard for video object 

segmentation and anomaly detection evaluations. Although not tailored for criminal activity detection, its 

robustness and high-quality annotations have made it a widely used baseline. More recent datasets, such 

as those discussed by Mukto et al. [16], address real-world complexities, including low-resolution 

footage, inconsistent lighting, and multi-actor behavior. Sahay et al. [22] emphasized real-time violence 

detection frameworks, incorporating motion vector analysis and CNN-based classifiers to trigger alerts 

with min- imal latency. These benchmarks and implementations provide evidence of progress toward 

operational systems but also reveal the need for context-aware intelligence that can adapt to diverse 

conditions. 

4. Advances in Architectural Design: GNNs and Transformers 

Graph neural networks (GNNs) and transformer-based architectures have emerged as promis- ing 

alternatives to recurrent neural networks for modeling long-range dependencies. Shi et al.  [23] 

introduced a two-stream adaptive graph convolutional network (AGCN) for ac- tion recognition, 

achieving state-of-the-art performance on several skeleton-based datasets. Similarly, Alberry et al.  [2] 

proposed a hybrid model using EfficientNet and transformers, achieving a balance between 

computational cost and anomaly classification accuracy. These models reduce the limitations of recurrent 

structures while improving the understanding of human-object interactions and temporal sequencing. 

Jeong et al. [11] pushed this further with a multi-modal fusion framework that combines spatial, audio, 

and contextual cues to increase detection robustness under real-world conditions. These approaches 

emphasize the importance of modeling contextual dependencies, not just motion anomalies, in 

surveillance applications. 

5. Multimodal Integration and Ethical Considerations in Violence Detection 

An emerging direction in automated violence detection research emphasizes the integration of 

multimodal data and heightened contextual awareness. This approach seeks to address the limitations of 

unimodal systems, particularly under real-world, noisy conditions.Jeong et al. [11] proposed a robust 

framework that effectively fuses audio, video, and contextual metadata to enhance violence detection 

https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.3hud5ojdrtu3
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.3uwa9gns20sh
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.5n875jlamv75
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.85ceq4vx4056
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.y8jjwvokaz22
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.9v9mdlsdrrrq
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.2b5nhffznbai
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.dfvghdauqzv9
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.yc45gaqfwtdk
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.yc45gaqfwtdk
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accuracy in challenging environments. Their sys- tem demonstrates strong performance by leveraging 

complementary cues across modalities, enabling more resilient predictions where traditional methods 

may falter.In a related ap- plication domain, Sahay et al. [22] developed a scene-specific violence 

detection pipeline tailored for smart city surveillance infrastructures. Their method incorporates spatial 

and environmental features unique to individual urban settings, thereby improving the speci- ficity and 

contextual relevance of detection outcomes.While these technical advancements mark significant 

progress, the ethical implications of such systems must not be overlooked. Williams et al. [26] critically 

examine issues of fairness and algorithmic bias in automated decision-making systems, particularly those 

deployed in surveillance and public safety con- texts. These studies collectively highlight a dual 

imperative in contemporary research: to improve technical robustness through multimodal and context-

aware strategies, while simul- taneously addressing the socio-ethical dimensions that govern their 

deployment in real-world settings. 

6. Edge Computing and Model Compression for Scalable Deployment 

Edge computing and model compression have become central topics in the push toward scal- able 

deployment. Patrikar and Parate [17] reviewed edge-computing-enabled surveillance systems and 

identified bottlenecks in latency, bandwidth, and storage. Mehmood [15] ad- dressed these challenges 

through Light Anomaly Net a lightweight architecture optimized for embedded hardware, delivering 

near real-time detection with minimal resource usage. Simi- larly, Kim et al. (2021) explored Mobile 

Net-based solutions for edge environments, although the source was not explicitly part of the initial 

reference list. Jebur et al. [9] proposed a generalized deep learning framework for anomaly detection 

that scales across devices and geographies, suggesting modular system architectures for edge 

deployment. These studies confirm that real-time detection is achievable with compact models, 

though accuracy often suffers without fine-tuning or scene-specific training. 
 

7. Behavior-Specific Modeling for Criminal Activity Detection 

Another important dimension of this field involves modeling specific categories of suspicious 

behavior. Zhang et al. [29] developed an intelligent sensing approach for detecting pickpock- eting 

groups in smart cities using remote sensing and urban pattern analysis. Hussain et al.[7] proposed a 

shot segmentation-based dual-stream model for robust human activity recog- nition, utilizing scene 

decomposition for more accurate anomaly labeling. Mehrdad et al. (2020), contributed a hybrid CNN-

LSTM model for detecting violence in public spaces, high- lighting that combining spatial and 

temporal layers enhances performance in high-motion scenes. These studies support the hypothesis 

that tailored architectures can improve results for targeted criminal behaviors rather than relying on 

generic anomaly detection. 

8. Model Architecture and Task Distribution Overview 

To provide a quantitative overview of the literature reviewed, Figure 3 illustrates the distri- bution of 

deep learning model architectures used across the surveyed studies, along with the proportion of 

different surveillance tasks tackled. As shown in the bar chart, convolutional neural networks (CNNs) 

are the most frequently used architecture due to their ability to extract high-quality spatial features 

from video frames. LSTM and RNN-based models are adopted where temporal modeling is crucial, 

particularly for behavior prediction. GANs, though less frequent, are effective in generating normal 

behavior patterns for anomaly detec- tion. Transformer-based and graph neural network (GNN) 

models are emerging techniques that offer improved performance for long-range dependency 

modeling. Lightweight models such as MobileNet and EfficientNet are increasingly preferred for 

real-time and edge-device implementations. 

https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.9v9mdlsdrrrq
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.z94jm36s7lxx
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.6nob9yt7aw3k
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.j1cla5yjbdwr
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.4it1cawadxru
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.yhf92j1ygemq
https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.yww307u5nefb
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The pie chart highlights the dominance of anomaly detection as the primary focus of recent research 

in this domain. Approximately 43% of the reviewed studies concentrate on detecting deviations from 

normative patterns in public settings. Violence detection, a subdomain of anomaly detection, accounts 

for 17%, followed by activity recognition (14%) and multimodal surveillance (11%). Interestingly, a 

growing number of studies (9%) now address ethical challenges such as algorithmic bias and fairness. 

Another 6% of the work involves system-level or policy-centric design frameworks. These 

distributions underscore the multi-faceted nature of the field, where both technical and socio-ethical 

dimensions are being actively explored. 

 
(a) Bar chart of model architectures used in recent literature. 

 

 

 
(b) Task distribution in the reviewed surveillance research. 

Figure 3: Quantitative summary of reviewed literature: (a) model architecture usage, and 

(b) task focus distribution. 
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9. Model Performance Comparison 

The comparative performance of different model architectures evaluated in recent literature is illustrated 

in Figure 4. Transformer-based models consistently outperform others in terms of both lower RMSE and 

higher R² values. These models excel in capturing long-range dependencies, making them highly effective 

for temporal behavior modeling in surveillance videos. GNNs also show competitive results by leveraging 

structured spatiotemporal relationships. Traditional CNNs, while efficient, tend to underperform in 

temporal tasks due to their static receptive field. Lightweight models like Light Anomaly Net and 

MobileNet are better suited for edge deployment but may suffer accuracy trade-offs. These findings 

reflect the ongoing trade-off between computational efficiency and predictive accuracy across model 

types in real-world applications. 

 

 
 

Figure 4: Quantitative performance (RMSE and R²) of model architectures based on reported benchmark 
studies. 

Ethical, regulatory, and policy considerations have become increasingly relevant in de- ploying AI-based 

surveillance systems. Williams et al. [26] raised concerns about racial bias and discrimination in machine 

learning models used in law enforcement, showing that un- balanced datasets can lead to disproportionate 

false positives against marginalized groups. Binns et al. [4] echoed this, calling for algorithmic 

accountability and transparency in AI- driven decision-making. Ardabili et al. [3] discussed the dual role 

of AI in enhancing public safety while risking mass surveillance and loss of privacy. These discussions 

underscore the importance of ethical design in AI systems—particularly those used in sensitive contexts 

like criminal activity detection. 

Real-time deployment of these technologies must also address operational integration, power constraints, 

and alerting systems. Sung and Park [25] proposed an intelligent surveillance system for crime prevention 

using CNNs, providing architectural insights for integrating deep learning models into existing municipal 

infrastructure. Their system showed improved incident response times but was limited by scene 

specificity. Sahay et al. [22] validated their framework in dynamic environments, incorporating multi-

https://docs.google.com/document/d/1tecYkiAIB51T1fosgDRs6gJlcQGeigs-_Pw-zbIu5NQ/edit#heading=h.s0nbp4mfsqi0
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level decision trees with CNNs for early threat prediction. Mukto et al. [16] presented a full-stack 

implementation using multi-layer CNNs and contextual metadata, showing that hybrid models can 

outperform traditional visual-only techniques when fused with sensor inputs. These findings demonstrate 

the maturity of this domain and point toward feasible deployment strategies in real-world city 

surveillance. 

10. Evolution of Research Over Time 

To provide a temporal overview of the research landscape, Figure 5 presents a timeline plot showing the 

number of significant studies published each year from 2016 to 2025. The early phase (2016–2017) marks 

the foundational use of deep learning for anomaly detection, with autoencoders and GANs emerging as 

key methods [6, 20]. By 2018–2019, attention shifted toward integrating spatiotemporal models and more 

sophisticated architectures like GNNs and LSTMs [21, 8]. From 2020 onward, research accelerated 

toward real-time and edge-deployable solutions [15, 22], and recent works in 2024–2025 highlight the 

application of transformers, policy-aware designs, and lightweight architectures [2, 9]. This timeline 

reflects both the technological progression and thematic diversification in the field of intelligent 

surveillance systems. 

 

Figure 5: Research activity timeline showing evolution of deep learning-based surveillance studies 

(2016–2025). 

Table 1 provides a comparative overview of ten of the most relevant research studies focused on deep 

learning applications in suspicious criminal activity detection. The selected works span core technical 

strategies including autoencoder-based unsupervised learning [6], GAN-driven anomaly modeling [20], 

and hybrid models like CNN-Transformer architectures [2]. 
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Table 1: Comparative Analysis of Key Literature on Deep Learning for Suspicious 

Activity Detection 

 

Author(s) Year Title Method Used  Dataset / 

Domain 

Strengths Limitations 

Hasan et al. 

[6] 

2016 Learning 

Temporal 

Regularity in 

Video Sequences 

Autoencoders 

(Unsupervised) 

Surveillance 

video streams 

Learns 

motion 

regularity 

without 

labels 

Weak against 

subtle or 

context-based 

anomalies 

Ravanbakhsh 

et al. [20] 

2017 Abnormal Event 

Detection in 

Videos Using 

GANs 

GAN-based 

anomaly 

modeling 

Synthetic and 

real videos 

Captures 

complex 

video 

dynamics 

GAN training 

is unstable and 

data-sensitive 

Ionescu et al. 

[8] 

2019 Object-Centric 

Autoencoders for 

Anomaly 

Detection 

Autoencoders Avenue 

dataset 

Combines 

object and 

motion 

modeling 

Relies heavily 

on object 

detection 

accuracy 

Sabokrou et 

al. [21] 

2018 Deep-Anomaly in 

Crowded Scenes 

Fully 

Convolutional 

Network 

(FCN) + 

dummy 

anomalies 

UCSD 

(crowded 

urban scenes) 

Real-time 

detection 

with good 

scalability 

Limited 

semantic 

behavior 

understanding 

Mukto et al. 

[16] 

2024 Real-Time Crime 

Monitoring 

System Using DL 

CNN + 

metadata 

integration 

Custom 

surveillance 

video data 

Context-

aware, 

real-time 

system 

Lacks 

evaluation on 

standard 

datasets 

Mehmood 

[15] 

2021 LightAnomalyNet Lightweight 

CNN 

Edge 

surveillance 

systems 

(embedded 

devices) 

Efficient 

for 

embedded 

devices 

Reduced 

accuracy on 

complex 

anomalies 

Alberry et al. 

[2] 

2025 Abnormal 

Behavior 

Detection Using 

EfficientNet-

Transformer 

EfficientNet + 

Transformer 

Real-world 

surveillance 

videos 

Accuracy–

efficiency 

tradeoff 

handled 

well 

Requires 

careful 

hyperparameter 

tuning 

Jeong et al. 

[11] 

2023 Multi-Modal 

Fusion for 

Anomaly 

Surveillance 

Audio + video 

+ metadata 

fusion 

Smart city 

sensor 

environments 

Resilient 

across 

noisy 

modalities 

Sensor 

integration 

increases 

system 

complexity 

Sahay et al. 

[22] 

2022 Crime Scene 

Surveillance 

Framework 

CNN + multi-

level alerts 

Real-time 

CCTV feeds 

Practical 

violence 

detection 

Limited 

adaptability 

across diverse 

scenarios 
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The table reveals three distinct trends. First, unsupervised methods such as those by Hasan et al. and 

Ionescu et al. remain valuable due to their low data annotation requirements, although their performance 

can degrade in complex or ambiguous scenes. Second, recent innovations prioritize edge efficiency and 

deployment scalability, demonstrated by Light Anomaly Net [15] and the system from Mukto et al. [16]. 

These architectures offer practical tradeoffs between speed and precision, suitable for real-time urban 

surveillance. 

This comparative synthesis underscores the necessity for hybrid, lightweight, and ethically aware 

frameworks that generalize well in diverse, real-world surveillance scenarios. 

 

11. Model Accuracy Levels Across Studies 

Figure 6 illustrates a heatmap comparison of model types against observed accuracy levels in the 

reviewed literature. Models like Transformers and GNNs tend to dominate the high- accuracy tier, with 

multiple studies reporting accuracy above 85% in real-world surveillance scenarios [2, 23]. RNN/LSTM 

architectures also show strong performance when temporal dynamics are crucial, such as violence 

detection or behavior analysis. On the other hand, lightweight models often trade off accuracy for 

inference speed and energy efficiency, cluster- ing mainly in the low to medium tiers [15, 17]. CNNs and 

GANs show stable performance in the medium range but rarely reach top accuracy levels due to their 

limitations in modeling long-term dependencies or scene context. This analysis underscores the need to 

match model design with operational goals — balancing accuracy with deployment constraints. 

 

Figure 6: Heatmap showing the number of reviewed studies falling under different accuracy tiers for 

each model type. 

In summary, the literature presents a strong foundation of deep learning models for surveillance-based 

anomaly detection. Advances in spatiotemporal modeling, edge deployment, multimodal fusion, and 

ethical AI collectively contribute to increasingly accurate and 

scalable systems. However, challenges remain in context adaptation, reducing false positives, ensuring 

fairness, and balancing model complexity with real-time constraints. This research builds upon the 

identified gaps by developing a deep learning-based system that combines lightweight CNN-transformer 
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hybrid architecture, contextual behavior analysis, and scalable deployment for identifying suspicious 

criminal activities in real-world environments. 

Methodology 

This section outlines the architectural design, dataset formulation, preprocessing pipeline, model 

configuration, and training strategy used to develop the proposed deep learning- based framework for real-

time suspicious activity detection. The methodology follows a modular pipeline, integrating spatial and 

temporal modeling components, and is optimized for scalability and real-time deployment across edge and 

cloud infrastructures. 

1. System Overview 

The proposed surveillance framework is structured as a four-stage pipeline encompassing video frame 

acquisition, spatial feature extraction, temporal sequence modeling, and be- havior classification. As 

illustrated in Figure 7, the system ingests continuous surveillance footage, samples frames at a fixed rate, 

and processes each frame using a deep convolu- tional neural network (CNN) to encode salient spatial 

features. These extracted features are then assembled into temporal sequences and processed using a 

Transformer-based encoder to capture inter-frame behavioral patterns. The encoded representation is 

passed to a softmax classifier to determine the likelihood of suspicious activity. The final classification 

result triggers real-time alerts and is logged for downstream analysis or visualization on the user 

interface. The entire system is designed to support real-time inference, with compatibility for deployment 

on NVIDIA Jetson Xavier NX and other edge-computing platforms. 

 

Figure 7: System architecture showing modular components for real-time suspicious activity detection. 

 

2. Dataset and Preprocessing 

The model is trained and evaluated using a combination of real-world and synthetic surveillance datasets. 

The UCF-Crime dataset [24] provides extensive coverage of anomalous and criminal behavior in diverse 

urban environments and serves as the primary training corpus. It is supplemented by the Avenue dataset 

[14], which includes temporally annotated abnormal events, allowing for precise evaluation of temporal 

modeling accuracy. To improve the model’s sensitivity to rare or underrepresented activities, additional 

synthetic sequences were generated using Unity-based simulation platforms. These sequences simulate 

specific scenarios such as pickpocketing, loitering, coordinated group activity, and object theft, all of 

which are manually annotated at the event level. 
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∈ 
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Each video is uniformly sampled at 10 frames per second, and all frames are resized to a standardized 

resolution of 224 224 pixels to ensure compatibility with the pre-trained CNN backbone. Augmentation 

techniques are employed to enhance model generalizability to real- world variations in lighting, 

orientation, and background clutter. These techniques include random rotation within 15◦, horizontal 

flipping, contrast normalization, and temporal jittering of frame sequences. Background subtraction is 

also applied using Gaussian Mixture Models to isolate motion cues associated with human activity. To 

address the inherent class imbalance in criminal activity datasets, the Synthetic Minority Oversampling 

Tech- nique (SMOTE) [chawla2002smote] is used in the latent feature space, thereby generating 

synthetic examples of minority class embeddings while preserving feature distributions. 

3. Model Architecture 

The proposed model architecture combines a ResNet-50 CNN for spatial encoding with a Transformer 

encoder for temporal sequence modeling. Each sampled frame is passed through the CNN backbone to 

produce a feature map Ft  RH×W×D
, where H, W , and D denote the height, width, and depth of the 

convolutional representation, respectively. These frame-level features are flattened and concatenated to 

form a temporal sequence X = [x1, x2, . . . , xT ], where xi Rd
 represents the feature vector 

corresponding to frame i, and T is the length of the sliding window used for temporal modeling. 

Temporal dependencies among frames are modeled using a standard Transformer encoder. The encoder 

includes multi-head self-attention layers followed by feed-forward layers and residual connections. The 

attention operation is defined as: 

                                          (1) 

 

where Q, K, and V represent the query, key, and value matrices obtained through linear projections of the 

input sequence X, and dk is the dimensionality of the key vectors. Po- sitional encodings are added to the 

input sequence to retain temporal ordering. The final output of the Transformer encoder is aggregated 

using global average pooling and passed to a two-layer dense classifier with ReLU activation. The output 

layer uses softmax activation to generate class probabilities ŷ ∈ RC
 for C behavioral classes: 

                             (2) 

where Z is the pooled output of the Transformer, and W1, W2 are learnable weights. Table 2 provides a 

summary of the key architectural modules and their functions. 

 

 

 

 

Table 2: Core architectural components and functional roles in the proposed framework. 

Component Function 
ResNet-50 CNN Encodes frame-level spatial features 

Transformer Encoder Models temporal behavior patterns across frames 

Positional Encoding Preserves sequence order in Transformer input 

Global Average Pooling Aggregates temporal feature vectors 
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Dense Classifier Predicts class probabilities for alert generation 

 

4. Training Strategy and Evaluation Metrics 

The model is trained using a weighted cross-entropy loss to handle the class imbalance between 

normal and suspicious behavior sequences. Let yi be the true label and yˆi be the predicted 

probability for class i. The loss function is defined as: 

 

                                                       (3) 

 

where wi is the class-specific weight inversely proportional to class frequency. To further 

enhance sensitivity to minority classes, especially in hard examples, a focal loss term 
[lin2017focal] is added: 

 

                                              (4) 

with a focusing parameter γ = 2 and a balancing factor αi selected empirically. The model is optimized 

using the AdamW optimizer with an initial learning rate of 10
−4

 and a cosine annealing schedule. Early 

stopping is applied based on validation loss. Transfer learning is employed by initializing the CNN 

backbone with Image Net-pretrained weights, and fine-tuning is restricted to the top convolutional 

blocks and fully connected layers. The Transformer encoder is trained from scratch. 

Evaluation is performed using stratified five-fold cross-validation, with 80% of the data used for 

training and 20% for testing in each fold. Performance is reported using standard classification metrics, 

including accuracy, precision, recall, and F1-score. The Area Under the ROC Curve (AUC) is used to 

assess the quality of probabilistic outputs. Latency measurements are also reported using Jetson Xavier 

NX and NVIDIA A100 GPU platforms to evaluate real-time feasibility. All experiments are conducted 

in PyTorch, and deployment- ready models are exported using the ONNX format and optimized using 

NVIDIA TensorRT. 

 

Implementation and System Integration 

This section describes the practical implementation aspects of the proposed suspicious activity detection 

framework, detailing software and hardware configurations, model optimization procedures, edge deployment 

strategies, and the real-time inference and alerting pipeline. The framework is designed to be deployable 

across a range of environments, from cloud-based servers to embedded edge devices operating under 

computational and energy constraints. 

 

1. Implementation and System Integration 
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The training, validation, and prototype development of the framework were conducted using Python 3.9 

with the PyTorch deep learning library (v1.13). Model training was accelerated using CUDA 11.6 on an 

NVIDIA A100 Tensor Core GPU with 40 GB VRAM. Training scripts were executed on a Linux-based 

Ubuntu 20.04 LTS environment with 256 GB system memory and an AMD EPYC 7742 processor. 

For deployment and testing under constrained environments, the system was ported to an NVIDIA Jetson 

Xavier NX development board. The edge device features a 6-core Carmel ARM CPU, a 384-core Volta 

GPU with 48 Tensor Cores, and 8 GB of LPDDR4x memory. TensorRT (v8.4) was used for model 

compilation and inference acceleration, while OpenCV (v4.5) supported image preprocessing and video 

decoding on-device. A summary of the software and hardware configurations is provided in Table 3. 

 

Table 3: System Configuration for Training and Edge Deployment 

Component Configuration 

Development OS 

Python Environment 

CUDA Toolkit 
Training GPU 
Edge Device 

Inference Engine 

Video Processing Library Model 
Format 

Ubuntu 20.04 LTS (64-bit) 

Python 3.9, PyTorch 1.13, 

TorchVision 0.14 

CUDA 11.6 with cuDNN 8.4 
NVIDIA A100 (40 GB, PCIe) 
NVIDIA Jetson Xavier NX (8 
GB) 
TensorRT 8.4 with ONNX Run- 

time 

OpenCV 4.5 

Exported as ONNX v1.12 

2. Model Deployment on Edge Devices 

Real-time deployment on embedded platforms necessitates optimizations for both latency and memory 

efficiency. The proposed CNN-Transformer model, once trained on high- performance servers, is 

exported to the Open Neural Network Exchange (ONNX) format, which provides cross-platform 

compatibility. This ONNX model is then parsed and optimized using NVIDIA TensorRT, which performs 

layer fusion, precision calibration, and kernel auto-tuning for the specific edge hardware. 

To further reduce model size and inference latency, post-training quantization is ap- plied to convert the 

model weights from 32-bit floating point (FP32) to 16-bit floating point (FP16), and in some cases to 8-

bit integer (INT8) representations, depending on the deployment context. Experiments on Jetson Xavier 

NX showed that quantization reduced inference time by approximately 35–50% without significantly 

affecting classification accuracy, in line with previous findings on edge model compression [15, 17]. 

The deployment process is illustrated in Figure 8, highlighting key stages from training to execution. 
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Figure 8: Deployment pipeline from training to edge execution with optimization and format conversion. 

 

3. Real-Time Inference Pipeline 

The inference pipeline is structured to achieve sub-300ms latency from video capture to alert generation. 

Each video feed is sampled in real-time at 10 FPS using a GStreamer- based capture module. Captured 

frames are resized and normalized before being forwarded to the CNN backbone, which produces spatial 

features. These features are accumulated in a sliding temporal window of 16–32 frames and passed to the 

Transformer encoder, which computes a behavioral embedding based on inter-frame motion and 

appearance. A pseudo-code abstraction of the inference logic is shown below for clarity. 

 

while True: 
frame = capture_frame() 
preprocessed = preprocess(frame) 
features = CNN(preprocessed) 
buffer.append(features) 
if len(buffer) == WINDOW_SIZE: 

sequence = stack(buffer) 
embedding = Transformer(sequence) 
prediction = Softmax(Classifier(embedding)) 
if prediction == "suspicious": 

trigger_alert() 
buffer.pop(0) 

Figure 10: High-level pseudocode for real-time inference loop on edge device. 

Memory and buffer management is handled using a cyclic queue structure to minimize allocation 

overhead. The pipeline is multithreaded to decouple I/O, preprocessing, and inference tasks, enabling 

concurrent frame ingestion and prediction. The end-to-end latency is measured from the moment a frame 
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is captured to the moment a classification label is generated and logged. 

4. Alerting and User Interface Integration 

Upon the detection of a suspicious activity class, an alert is generated and dispatched to a central control 

dashboard via MQTT (Message Queuing Telemetry Transport), a lightweight publish–subscribe 

messaging protocol optimized for constrained networks. The alert packet includes a timestamp, 

classification score, camera ID, and optionally the frame thumbnail associated with the detected anomaly. 

The backend integrates a PostgreSQL database to store alert logs and a Flask-based API server to serve 

client requests. A web-based dashboard, built using React.js, displays live alerts on a map-based interface 

with filtering options for location, severity, and category of anomaly.  

To ensure scalability in smart city environments, the system supports multiple simultane- ous video feeds 

and implements buffering and failover mechanisms. Furthermore, integration with local law enforcement 

communication protocols is feasible via RESTful endpoints or WebSocket interfaces. The alerting 

framework also allows for edge-based pre-filtering and central post-analysis, balancing local autonomy 

and cloud coordination. 

Results and Evaluation 

This section presents a comprehensive evaluation of the proposed framework based on both benchmark 

datasets and real-world surveillance scenarios. Results are analyzed across mul

tiple dimensions, including classification accuracy, temporal modeling effectiveness, and deployment 

feasibility. Comparative analyses with state-of-the-art models and ablation studies further establish the 

performance contributions of each architectural component. 

1. Benchmark Dataset Performance 

The model was trained and evaluated on two publicly available datasets: UCF-Crime [24] and the Avenue 

dataset [14]. UCF-Crime includes 13 anomalous activity classes and over 1,900 long-duration video clips, 

whereas the Avenue dataset consists of annotated short surveillance videos with temporal localization of 

anomalies. 

Five-fold cross-validation was used to ensure statistical robustness. Table 4 summarizes the results in terms 

of Accuracy, Precision, Recall, F1 Score, and AUC for both datasets. 

Table 4: Performance on Benchmark Datasets (Five-Fold Cross-Validation) 

Dataset Accuracy (%) Precision Recall F1 Score AUC 

UCF-Crime 

Avenue 

87.4 

90.2 

0.85 

0.88 

0.88 

0.91 

0.86 

0.89 

0.91 

0.93 

These results demonstrate the model’s ability to generalize across both coarse-grained and temporally fine-

grained anomaly detection tasks. The performance on the Avenue dataset, in particular, validates the 

efficacy of the Transformer encoder in capturing short-term behavioral anomalies. 

 

2. Comparative Analysis with Existing Models 
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To evaluate the competitiveness of the proposed method, we compare it against six state-of- the-art models: 

CNN-LSTM [28], GANomaly [1], Ionescu et al. [8], LightAnomalyNet [15], Transformer-Baseline [5], 

and GCN-based AnomalyNet [23]. 

Figure 10 presents a bar chart of average classification accuracy across models evalu- ated on the UCF-

Crime dataset. The proposed CNN-Transformer hybrid outperforms all baselines with a margin of 3.1–

7.8%. 

 

Figure 10: Comparative accuracy of the proposed model and baseline methods on UCF- Crime. 

The proposed model’s ability to effectively combine spatial representations with temporal dynamics 

provides a significant advantage in complex surveillance environments. 

3. Ablation Study: Model Component Contributions 

To quantify the contributions of individual architectural components, we conduct an ablation study by 

removing or modifying specific modules in the architecture. The variants tested include: (i) CNN-only (no 

temporal modeling), (ii) CNN + LSTM, (iii) CNN + Transformer (no positional encoding), and (iv) full 

model with positional encoding and Transformer. Table 5 presents the results of this analysis. 

Table 5: Ablation Study: Performance Impact of Architectural Components 

Model Variant F1 Score AUC Latency (ms) 

CNN only 0.71 0.78 42 

CNN + LSTM 0.79 0.84 95 

CNN + Transformer (no PE) 0.84 0.88 83 

CNN + Transformer (full) 0.89 0.93 91 

The results confirm that temporal modeling significantly boosts detection accuracy, with the Transformer-
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based encoder offering the best performance. Positional encoding further improves sequence 

representation, yielding the highest F1 and AUC scores.   

Although the LSTM-based variant reduces latency slightly, it performs worse than the full model in terms 

of both AUC and F1 score. 

4. Real-World Case Studies and Field Validation 

The proposed system was evaluated in a real-world smart campus surveillance setup comprising 8 IP 

cameras across outdoor and indoor environments. Over a 48-hour live video stream, the model flagged 27 

suspicious events. Manual verification showed 23 true positives and 4 false positives, yielding a real-world 

precision of 85.2% and recall of 92.0%. 

These qualitative results confirm that the system can effectively operate in uncontrolled environments with 

varying lighting, resolution, and occlusions. 

5. Performance Metrics: Accuracy, F1, AUC, Latency 

Figure 11 visualizes performance across key metrics for the proposed model. The values reflect average 

scores over five trials on the UCF-Crime test set. Latency is measured on both the NVIDIA A100 (server-

grade) and Jetson Xavier NX (edge) platforms. 

 

Figure 11: Performance metrics of the proposed model. Latency values are normalized (1 = 1 second). 

On the Jetson Xavier NX, average inference latency per frame sequence was 210 ms, satisfying real-time 

constraints. This confirms the viability of deploying the proposed model in embedded smart surveillance 

applications. 

Discussion and Limitations 

The results presented in Section 5 highlight the effectiveness of the proposed CNN-Transformer hybrid 

framework in accurately detecting suspicious activities from surveillance footage in both controlled and real-

world environments. In this section, we provide a broader contex- tual analysis of the model’s performance, 

compare it with contemporary approaches, assess its generalization capability, and discuss both technical and 

ethical limitations. 

1. Interpretation of Results 

The consistent performance across datasets, with an F1 score exceeding 0.89 and an AUC above 0.93, 
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indicates that the proposed model effectively captures both spatial and temporal patterns of human 

behavior. This is largely attributable to the use of multi-head self- attention in the Transformer encoder, 

which allows the model to attend to relevant frames even within noisy or cluttered video sequences. The 

ablation study further underscores the value of positional encodings and temporal context, confirming that 

long-range dependencies significantly improve anomaly classification. 

The high recall scores observed across benchmarks imply that the system minimizes false negatives—an 

essential trait for surveillance applications where missed events can have severe consequences. However, a 

trade-off emerges in the form of moderately elevated false positive rates, particularly in densely populated 

or highly dynamic scenes. These cases often reflect ambiguous or borderline behaviors that the model 

interprets conservatively as suspicious. 

2. Comparative Context and Model Generalizability 

In comparison with baseline models such as LightAnomalyNet [15] and GANomaly [1], our approach 

demonstrates improved robustness across multiple performance metrics. Figure 12 presents a radar plot 

comparing the proposed model to three competing methods across five evaluation dimensions: Accuracy, 

AUC, F1 Score, Inference Latency, and Resource Footprint. 

 

 

Figure 12: Grouped bar chart comparing model performance across five normalized dimensions.  

Higher is better. 

The radar plot indicates that while our model does not have the smallest resource foot- print, it provides a 

favorable balance between computational efficiency and predictive accuracy. This makes it especially 

suitable for edge deployments in urban surveillance systems, where real-time constraints must be met 

without reliance on high-performance cloud infrastructure. 

3. Deployment and Operational Considerations 
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One of the distinguishing features of the proposed framework is its adaptability across de- ployment 

scenarios.  Through quantization and ONNX-TensorRT optimization, the model is capable of running on 

Jetson Xavier NX with a per-sequence inference latency of ap- proximately 210 ms. However, latency is 

subject to variability depending on environmental complexity, video resolution, and system load. 

While the current prototype operates at 10 frames per second, adjustments can be made for high-frame-rate 

feeds by reducing the temporal window or leveraging lighter CNN back- bones (e.g., MobileNetV3). 

Additionally, our modular design supports extension to multi- modal inputs, including audio and sensor-

based metadata, which could further improve robustness in ambiguous settings [10]. 

4. Technical and Ethical Limitations 

Despite promising results, the system has several limitations that warrant further discussion. These 

limitations can be broadly categorized into technical constraints, dataset bias, and ethical concerns. Table 6 

provides an overview of these issues along with potential mitigation strategies. 

Table 6: Identified Limitations and Potential Mitigation Strategies 

Limitation Description Mitigation Strategy 

False Positives in 

Crowded Scenes 

Ambiguous motion patterns can be 

misclassified as suspicious. 

Incorporate scene- 

specific contextual priors or
 multi-modal data 

fusion. 

Lack of Fine-Grained 

Class Labels 

Most datasets are binary (nor- 

mal/suspicious). 

Use behavior-specific 

taxonomies in future 
annotations. 

Edge Device Memory 

Constraints 

Model size affects real-time viability. Employ  model  pruning 

and dynamic quantiza- 

tion techniques. 

Bias from Dataset De- 

mographics 

Surveillance datasets may underrep- 

resent certain environments. 

Curate balanced datasets 

across demographics and 
geographies. 

Privacy  and  Surveil- 

lance Ethics 

Risk of misuse and over-surveillance. Ensure transparency, 

consent policies, and 
fairness audits. 

Ethical concerns are particularly relevant in public safety applications. Research has shown that algorithmic 

surveillance systems may exhibit racial or socioeconomic bias if trained on imbalanced data [26, 4]. To 

address these concerns, fairness-aware training protocols can be introduced, including adversarial debiasing 

and balanced sampling. Explainability techniques such as attention heatmaps and SHAP-based 

interpretability modules may also improve user trust in model decisions. 

5. Opportunities for Future Work 

The framework can be enhanced in several directions. First, incorporating graph neural networks (GNNs) 

to model interactions among multiple agents could improve detection of group-level suspicious behavior. 

Second, multi-modal fusion with ambient audio and meta- data (e.g., time of day, crowd density) may 

improve robustness in noisy environments. Third, real-world deployment trials at scale (e.g., city-wide 

smart surveillance networks) can provide insights into operational challenges, failure modes, and social 
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impact. 

Conclusion and Future Work 

This study presented a modular, deep learning-based framework for the detection of suspicious criminal 

activities in real-time surveillance systems. The proposed architecture lever- ages a two-stream design: 

convolutional neural networks (CNNs) for spatial representation learning and Transformer encoders for 

temporal behavior modeling. By integrating these complementary paradigms, the system is capable of 

capturing both short-term motion anomalies and long-term behavioral patterns across various surveillance 

scenarios. 

Comprehensive evaluations on benchmark datasets such as UCF-Crime and Avenue demonstrated that the 

proposed method outperforms several state-of-the-art models across key performance metrics, including 

accuracy, AUC, and F1-score. The system also exhibits strong generalizability, maintaining high detection 

rates in real-world, noisy, and crowded environments, such as smart campuses and public transport stations. 

Edge deployment on NVIDIA Jetson Xavier NX confirmed the framework’s compatibility with real-time 

operational constraints, achieving sub-300 ms inference latency while preserving detection accuracy. Several 

innovations underpin the success of this framework: the use of positional encodings in Transformer layers to 

enhance temporal ordering, quantization-aware model optimization for low-power devices, and attention-

based interpretability to support post-hoc analysis of anomalous predictions. These components collectively 

form a scalable, interpretable, and deployable solution suitable for modern smart city surveillance ecosystems. 

Despite these contributions, limitations remain. False positives in dynamic, densely populated scenes and the 

absence of fine-grained behavioral class labels in existing datasets restrict the system’s expressiveness. 

Additionally, ethical and privacy concerns surrounding automated surveillance require the incorporation of 

fairness-aware learning protocols and transparent decision-making mechanisms. 

Future Work 

Future research will focus on several key areas: 

• Multi-modal data fusion: Integrating audio signals, infrared imagery, and metadata (e.g., crowd 
density, time-of-day) could enhance detection robustness, particularly un- der occlusion or poor 
lighting conditions. 

• Graph-based interaction modeling: Incorporating graph neural networks (GNNs) to model 
human-object and human-human interactions may improve the detection of complex group 
activities and coordinated suspicious behavior. 

• Scene-adaptive learning:  Developing unsupervised domain adaptation strategies to 

dynamically calibrate the model to new environments without labeled data will increase the scalability 
of the system. 

• Ethical AI integration: Implementing algorithmic fairness audits, differential pri- vacy 
mechanisms, and explainability frameworks will help address societal concerns and regulatory 

compliance in surveillance deployments. 

• Scalable deployment at urban scale: Expanding the system for city-wide deployments with 
distributed edge-cloud coordination, centralized dashboards, and federated learning could transform 
this framework into a backbone for next-generation urban safety infrastructures. 

By addressing these future directions, the proposed system can evolve into a more comprehensive, fair, 
and adaptive solution for proactive crime detection in public surveillance networks. 
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